Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків



Сторінка3/5
Дата конвертації12.03.2018
Розмір0.89 Mb.
1   2   3   4   5

СТЕФАН БАНАХ
(1892—1945)

За свідченням спеціалістів до видатних математиків XX ст., які працювали

на українській землі, слід, віднести Стефана (Степана Степановича

Банаха. Уродженець Рахова, він усе своє свідоме життя пов'язував зі

Львовом. Тут С.Банах закінчив 1914 р. Політехнічний інститут, тут

захистив докторську дисертацію, ста професором. Спочатку працював в

«альма-матер», а згодом — у Львівському університеті. Світову славу

Стефан шах здобув як один із засновників сучасного функціонального

аналізу, що є нині основою математики.
Світове визнання — поряд з Празькою і Гетінгенською — одержала Львівська

математична школа, заснована Банахом. Тут виховувалася ціла плеяда

математиків, які після другої світової війни виїхали за кордон. А Стефан

Банах до кінця свого життя працював у Львові, очолюючи, як і до війни,

фізико-математичний факультет університету. Одна з вулиць Львова носить

його ім'я. Польське математичне товариство встановило премію імені

С.Банаха.

МИКОЛА БОГОЛЮБОВ
(1909—1993)


Україна по праву може пишатися таким своїм вихованцем, як академік

Микола Боголюбов. Народився він у Нижньому Новгороді, але через рік

сім'я переїхала в Україну. До 1918 р. жив у Києві. Під час громадянської

війни доля закинула родину Боголюбових до с.Велика Круча Полтавської

обл., де Микола закінчив семирічку.
Після повернення родини до Києва вивчав самостійно курси вищої

математики та фізики.


Тринадцятирічному хлопцеві, з огляду на його здібності, дозволяють

відвідувати лекції в Київському університеті, а з 1923 р. його заняттями

з математики керує відомий учений Микола Крилов.
У сімнадцять років Микола Боголюбов мав уже такі результати з теорії

варіаційного числення, за які йому присудили кандидатський ступінь, а

Болонська академія наук (Італія) відзначила спеціальною премією.

Докторський ступінь йому присвоїли через два роки без захисту дисертації

спеціальним рішенням Пленарного зібрання ВУАН за поданням академіка

Дмитра Граве.


У 1928—1973 pp. працював в АН УРСР, 1936—1950 pp. — професор Київського

і Московського університетів, а з 1949 р. працював у Математичному

інституті ім. Стеклова АН СРСР, одночасно в Об'єднаному інституті

ядерних досліджень. За видатні заслуги в розвитку математики, механіки, теоретичної фізики,

академік Микола Боголюбов удостоєний звання двічі Героя Соціалістичної

Праці (1969, 1979), лауреата Ленінської (1958) та трьох Державних премій

СРСР (1947, 1953, 1984).
ФАЛЕС МІЛЕТСЬКИЙ (БЛИЗЬКО 624 -548 РР. ДО Н.Е.)

Початки культури стародавньої Греції сягають у сиву давнину. У VІІ – V ст.. до н.е. на узбережжі Іонійського моря були розташовані квітучі грецькі міста – колонії Мілет, Ефест, Кротон та ін. Їх географічне положення сприяло розвитку економіки й культури. Греки наполегливо працювали над установленням тісних зв′язків з могутніми й культурними сусідніми державами Сходу, такими, як Єгипет, Фінікія, Вавілон. Зв′язки ці мали, насамперед, економічний характер і розвивались у формі торгівельних відносин, а це, природно, впливало на культуру грецьких колоній.


У VІІ- VІ ст. до н.е. з′являються перші елементарні праці грецьких учених з астрономії, метеорології, геометрії, медицини тощо. Учені філософи того часу, спостерігаючи явища природи, робили практичні висновки. Розвиток мореплавства, хліборобства зумовлювали потребу глибшого вивчення явищ природи.


Зароджуються перші натурфілософські теорії. Найвидатнішим представником такої філософської течії, що творчо й плідно вивчала навколишній світ, була так звана Іонійська школа, заснована філософом і вченим Фалесом Мілетським.
Фалеса за давньою традицією відносять до так званих «семи мудреців» світу: він був одним з найвидатніших математиків свого часу. Історичних документів чи будь-яких першоджерел про життя вченого немає, бо його праці до нас не дійшли. Про діяльність Фалеса Мілетського ми дізнаємося лише з коментарів і переказів учених та авторів наукових праць пізнішого часу – Ендема Родоського, Діогена Лаерція, Прокла та ін. За цими переказами допитливий юнак ще в молоді роки вирушив у подорож до Єгипту, щоб ознайомитися з єгипетською культурою і вивчити природничі науки. Здібний та обдарований, Фалес не тільки швидко оволодів знаннями, що нагромадили єгипетські вчені, а й зробив ряд відкриттів у науці. Він самостійно обчислив висоту єгипетських пірамід за їхньою тінню, чим немало здивував єгипетського фараона Амазіса.
Повернувшись на батьківщину, Фалес заснував так звану Іонійську філософську школу, в якій ознайомлював учнів із своїми філософськими поглядами і передавав знання, здобуті в Єгипті. Фалес за своїми поглядами був матеріалістом. Він учив, що все суще не створене Богом, а само виникло з початкової стихії – води. Учні і послідовники Фалеса Мілетського розвивали і поглиблювали його науково-філософське вчення. Анаксімен доводив, що жива і нежива природа розвинулась з повітря: внаслідок згущення виникли тверді і рідкі тіла, а в результаті розрідження – вогонь. Анаксімандр учив, що першоосновою світу є безконечна матерія. Він висував теорію розвитку з цієї матерії живих істот.
Фалес спрямовував зусилля своїх учнів на спостереження явищ приводи, на розробку нових важливих питань математики і астрономії. Історики вважають, що Фалесу належить доведення теореми про рівність вертикальних кутів, теорем про рівність кутів при основі рівнобедреного трикутника, про рівність двох трикутників за стороною і двома прилеглими кутами. Він довів теорему про те, що вписаний у коло трикутник, одна із сторін якого є діаметром, прямокутний.
Фалес знайшов також розв'язання задачі на визначення відстані від корабля, що перебуває в морі, до гавані без безпосереднього вимірювання цієї відстані.
Можливо, Фалес уже знав властивості подібних фігур, принаймні рівнобедрених прямокутних трикутни­ків. Найбільшим досягненням його в математиці було введення у геометрію ідеї доведення. Геометрія як наука, в якій усі твердження доводились на основі аксіом, починає розвиватися саме в Іонійській школі.
У галузі астрономії Фалесу і його учням приписують визначення тривалості року (365 днів), думку про те, що Земля є серединою Всесвіту і має кулясту форму. Як гадають історики, Фалес встановив, що по­перечник Сонця становить 1/720 частину його шляху, тобто відношення діаметра Сонця до довжини екліп­тики дорівнює 1/720. На той час цей результат був досить точним. Фалес передбачив сонячне затемнення, яке відбулося 28 травня 585 року до н. е. Цей факт справив велике враження на його сучасників.
Один з талановитих послідовників Фалеса Анаксагор (V ст. до н. е.) висловив думку, що небесні тіла складаються з каміння і не падають на Землю тому, що перебувають у постійному коловому швидкому русі. Закони руху небесних тіл через дві тисячі років встановив великий німецький математик Йоганн Кеплер, а математично обгрунтував їх великий англійський учений Ісаак Ньютон.
Наукові дослідження у галузі математики, астрономії та інших наук Фалес поєднував з широкою дер­жавно-політичною діяльністю. Він був людиною високоосвіченою, мудрою й енергійною. Особливо цінними були його поради, що стосувалися військової справи.
Гадають, що Фалес трагічно загинув на стадіоні під час великих олімпійських ігор, коли йому було майже 80 років. Про причини його загибелі існує кілька версій. Одна з них свідчить про те, що смерть сталася від сонячного удару, інша, що людський натовп, виходячи із стадіону, мимоволі заподіяв смерть старому мудрецеві. На пам'ятнику Фалесу, що стоїть серед широких ланів, вирізьблено: «Наскільки мала ця гробниця, настільки велика слава цього царя астрономії в галузі зірок».
Філософські і наукові надбання Іонійської школи стали тим сприятливим грунтом, на якому почала бурхливо зростати і розвиватися наступні епохи славнозвісна еллінська культура.
ПІФАГОР САМОСЬКИЙ (БЛИЗЬКО 580—500 PP. ДО Н. Е.)

Після Фалеса Мілетського визначну роль у розвитку математики відіграв видатний представник еллінської культури – філософ і математик Піфагор. Точних історичних даних про життя і діяльність Піфагора не збереглося.
За переказами, Піфагор народився близько 580 р. до н.е. на о.Самос біля іонійського узбережжя Середземного моря, в багатій купецькій сім'ї. Перші наукові знання він здобув від ученого Ферекіда з м. Сіроса. Згодом Піфагор познайомився з уже відомим на той час філософом-математиком Фалесом і за його порадою вирушив до Єгипту – центру тодішньої наукової і дослідницької діяльності. Проживши в Єгипті 22 роки і у Вавілоні 12 років, він здобув глибокі знання з природничих і математичних наук. Повернувшись на о. Самос, Піфагор планував створити філософську школу. Але з невідомих причин він незабаром залишив Самос і оселився в м. Кротоні — грецькій колонії на півдні Італії. Тут Піфагор знайшов сприятливі умови для своєї діяльності. Він зібрав навколо себе групу однодумців, головним чином аристократів, і створив таємний гурток. Члени гуртка вивчали різні питання філософії і математики. Піфагорійська школа розширювалася, з'явилися її відділення в інших містах. Але діяльність піфагорійців мала таємний характер. Нових членів до школи Піфагора приймали за особливим ритуалом. Кожний новий член гуртка давав клятву зберігати в таємниці все, що відбувається у школі, а також не розповідати нічого про її засновника Піфагора, якого вважали пророком. Члени піфагорійської школи мали спеціальний знак – пентаграму (правильний п'ятикутник), за яким вони впізнавали один одного.
Щоб зрозуміти роль піфагорійської школи в розвитку математичної науки, слід охарактеризувати її філософське вчення. Піфагорійці вважали, що в природі існують дух і матерія, і надавали числам містичного значення. Вони гадали, що речі — це відображення чисел, число — це закон і зв'язок світу, це сила, яка керує богами і смертними. Тому природу і всевладну силу числа можна бачити не тільки в ділах божих, а й в усіх людських заняттях — мистецтві, ремеслах, музиці.
Піфагор відкрив важливий закон музики, за яким висота тону струни обернено пропорційна до її довжини. Він визначив також, що коли довжини струн відносяться як 6:4:3, то при одночасному звучанні вони дають приємний гармонійний акорд; якщо ж ці числа змінити, то звукова гармонія порушується.
Піфагор поширив закон гармонії на інші явища природи, узагальни його. Але це привело до деяких неправильних висновків. Наприклад, піфагорійці вважали, що радіуси небесних сфер (їх вони налічували 10), обертаючись навколо «центрального вогню», перебувають у такому самому відношенні, як і довжини струн, що утворюють гармонію. Вони твердили, що небо є число і гармонія. Позитивним тут був здогад про те, що земля рухається.
Виходячи із своїх ідей, піфагорійці проводили дослідницьку робот в математиці. Вони комбінували числа і, надаючи їм містичного значення, ділили їх на числа добрі – непарні числа; злі – парні числа: досконалі – кожне з яких дорівнює сумі своїх дільників (якщо з числа дільників виключити саме число). Наприклад, досконалим числом є 6 ( бо сума його дільників 1, 2, 3 дорівнює шести. Числа дружні – це числа, з яких одне дорівнює сумі дільників другого, але також без цього самого числа. Були в них числа пірамідальні, многокутні т. д. Зокрема, прямокутним називали ціле число, що дорівнює добутку двох інших цілих чисел. Піфагор геометрично довів, що суми послідовних непарних чисел починаючи з одиниці, є точними квадратами. Наприклад, 1+3 = 4 = 22, 1+3+б = 9 = 32, 1+3 + 5 + 7 = 16 = 42, 1+3 + 5 + 7 + 9 = 25 = 52 і т. д.
Вивчаючи натуральний ряд чисел піфагорійці встановили таку властивість сум послідовних чисел: 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 і т. д. Піфагор багато займався пропорціями і прогресіями. Піфагорійці розрізняли три види пропорцій: арифметичну, геометричну і гармонічну.
Отже, Піфагора та його учнів числа цікавили тільки в теоретичному плані. Вивчення дій з числами піфагорійців цікавило мало.
Але дослідження, проведені піфагорійцями над числами та їх властивостями, поклали початок новій науці – геометричній алгебрі. Величини розглядалися тут як відрізки. Це мало величезне значення для дальшого розвитку математики.
Дослідження Піфагора та його учнів у галузі геометрії також були досить успішними. Але і в геометрії вони шукали підтверджень своїх філософських ідеалістичних поглядів і відповідно пояснювали геометричні істини. Так, піфагорійці твердили, що всі геометричні тіла визначаються співвідношенням їх числових характеристик. Куб, наприклад, визначається числами 2, 6 і 8 за кількістю ребер, граней і вершин.
Велику увагу піфагорійці приділяли дослідженням властивостей прямокутних трикутників, сторони яких визначаються цілими числами. Можна припустити, що найпростіший з таких трикутників, так званий єгипетський трикутник з сторо­нами 3, 4, 5, був відомий Піфагору ще з часів його подорожі до Єгипту. Прямокутний трикутник піфагорійці вважали найкращою і найдосконалішою фігурою. Одним із способів побудови такого трикутника був поділ правильного трикутника пополам. Прямокутні трикутники, довжини сторін яких — цілі числа, утворюють окремий клас, для якого справджується теорема, названа ім'ям Піфагора, хоч вона була відома задовго до нього вавілонянам. За теоремою Піфагора сума площ квадратів, побудованих на катетах прямокутного трикутника, дорівнює площі квадрата, побудованого на гіпотенузі.
Можливо, що вивчення властивостей прямокутних трикутників привело піфагорійців до відкриття несумірності відрізків. Але це відкриття суперечило філософській теорії про «гармонію світу». Виявилося, що числом не можна виміряти довжину прямолінійного відрізка — діагоналі квадрата, сторона якого дорівнює одиниці. Пояснити це Піфагор та його учні не могли, тому і тримали своє відкриття в суворій таємниці.
Збереглась легенда, що один з піфагорійців, Гіпас, розголосив таємницю про ірраціональне число. Покараний богами за зраду, він загинув у морі під час бурі.
Піфагорійці знали, що сума внутрішніх кутів трикутника дорівнює 2d, що навколо однієї точки на площині можна розмістити 4 квадрати, 6 правильних трикутників, 3 правильні шестикутники. Вони вміли будувати правильний п'ятикутник, цей спосіб побудови до нас не дійшов.
Евклід у своїх творах приводить новий спосіб побудови такого трикутника, в якому не застосовується поділ радіуса описаного кола в кратному і середньому відношенні. Він спочатку будує вписаний рівнобедрений трикутник, у якому і при основі вдвоє більші від кута при вершині. Кути при основі мають по 72°, а при вершині — 36°. Якщо провести бісектриси кутів при основі, то коло поділиться на 5 рівних частин. (Це окрема задача).
Можливо, що піфагорійцям цей спосіб побудови правильного вписаного п'ятикутника був відомий.
Побудови правильних плоских фігур, зокрема п'ятикутника, а отже, і десятикутника, безпосередньо підвели піфагорійців до побудови правильних многогранників. За свідчен­нями деяких істориків Піфагор і його учні вміли будувати всі п'ять видів правильних многогранників і, зокрема, такі складні многогранники, як додекаедр або ікосаедр. Це було на той час значним досягненням.
Деякі з істориків пізнішого часу свідчили, що піфагорійцям було відоме поняття ізопериметрії. Найпростіша ізопериметрична задача — це знаходження серед усіх кривих даного периметра тієї кривої, яка обмежує фігуру найбільшої площі. Піфагорійці знали розв'язок цієї задачі: кривою є коло. Просторовим аналогом ізопериметричної задачі є задача про відшукання замкненої поверхні заданої площі, яка обмежує тіло найбільшого об'єму. Шуканою поверхнею є сфера. При цьому, на догоду своїм релігійним уявленням про світ, вони стверджували, що куля є найблагородніша просторова фігура, а круг — найдосконаліша плоска фігура.
В оцінці діяльності піфагорійців думки вчених розходяться, бо ніяких письмових документів їхньої школи не залишилось. Проте з впевненістю можна вважати, що Піфагор та його учні своїми дослідженнями внесли вагомий вклад у розвиток еллінської культури.


ЕВКЛІД (ІV-ІІІ СТ. ДО Н.Е.)


Під час завойовницьких воєн цар Олександр Македонський заснував багато міст. Деякі з них, особливо Александрія, значно розвинулись. Грецькі архітектори збудували Александрію за докладно розробленим планом. Місто перетинали під прямим кутом дві магістралі. Тут були широкі вулиці й прямокутні квартали. Головна вулиця мала ширину 30 м і довжину 5,5 км. Близько третини міста займали царські палаци, храми, будинки жерців, вельмож і багатіїв.


Після смерті Олександра Македонського його величезна держава розпалася. Єгиптом почала правити династія грецьких царів Птолемеїв. Щоб звеличити себе і підвладну державу, цар Птолемей І запрошував до Александрії учених, поетів, скульпторів і філософів. Для них був збудований розкішний палац при храмі Муз – дев'ятьох супутниць бога Аполлона. У греків ці Музи вважалися охоронцями наук і мистецтва, тому збудований пала) назвали Музейоном. Учені жили там на повному царському утриманні і займалися тільки науковими дослідженнями, філософією, поезієї і мистецтвом. Музейон був центром наукового і культурного життя Єгипту, своєрідною академією наук.
Він приваблював до себе освічених людей, учених та поетів і своєї чудовою бібліотекою, у сховища якої зберігалось понад п'ятсот тисяч рукописів. Серед учених, що жили і працювали у Музейоні, було багато грецьких математиків – Ератісфен, Герон та інші. Та найбільше для розвитку математики зробив геометр Евклід.
Історія не зберегла для нас достовірних відомостей про життя цього видатного вченого. Вважають, що Евклід народився в Афінах близько 325 р. до н.е. і на запрошення царя Птолемея І на початку III ст. до н.д. прибув до Александрії.
Працюючи в бібліотеці Музейону і упорядкуванням математичних манускриптів, Евклід створив славнозвісну працю з математики, яку назавав «Начала».
«Начала» Евкліда складаються з «книг»-сувоїв. Перші шість книг присвячені планіметрії, VII-X книги – арифметиці і несумірним величинам, які можна побудувати за допомогою циркуля і лінійки, XI-Х –стереометрії. І книга починається викладом 23 означень і 10 аксіом, причому перші п'ять з цих аксіом називаються «загальними поняттями», а решта – «постулатами» ( у різних списках «Начал» є різні кості аксіом і постулатів). Дальші означення містяться у вступах до інших книг. Формулюючи постулати, Евклід користується співвідношеннями рівності, які означаються «загальними поняттями» – аксіомами. Під розв'язанням задач Евклід розумів побудову за допомогою циркуля та лінійки. Зокрема, для Евкліда знайти площу або об'єм означало побудувати циркулем і лінійкою квадрат чи куб потрібної площі об'єму.
«Начала» Евкліда закінчувались побудовою за допомогою циркуля і лінійки ребер п'яти правильних многогранників, вписаних у сферу даного радіуса, і дослідженням здобутих несумірних величин.
Видатний учений подолав неабиякі труднощі, щоб систематизувати, узагальнити та довести багато складних співвідношень між елементами просторових і плоских фігур, які виражаються деякими числами.
У той час ще не було не тільки буквеної символіки, а навіть знаків дій додавання, віднімання тощо. Усе записували словами та зображували геометричними малюнками.
Тепер, користуючись запровадженою в XVI—XVII ст. буквеною символікою, ми швидко і легко виводимо найрізноманітніші формули, які виражають залежності між різними, у тому числі й геометричними, величинами. Наведемо хоч би такий приклад. Кожний учень 7 класу може швидко вивести формулу, за якою обчислюється квадрат суми двох чисел. Для цього досить суму чисел, позначених буквами, помножити саму на себе, тобто
(a + b)(a + b) =a2 + 2ab + b2.
Цю саму формулу Евклід виводить геометрично. Він пропонує на відрізку АВ побудувати квадрат ABCD. Через точку Е (яка ділить АВ на два відрізки а і в) провести ЕР||ВС, побудувати діагональ BD і провести через О пряму КМ||АВ. Потім доводить таку теорему:
«Якщо дану пряму АВ поділити у будь-якій точці на два відрізки, то квадрат, побудований на цілій лінії, дорівнює двом квадратам і двом прямокутникам, побудованим на цих відрізках».
Суть міркувань полягає в обґрунтуванні того, що чотирикутники МВЕО і POKD – квадрати, з чого випливає, що чотирикутники ОЕАК і СМОР – два рівні прямокутники.
Він пояснив що таке число ірраціональне. Такими числами виражаються відношення довжин несумір­них відрізків. Можливо, що до їх вивчення Евклід прийшов, виводячи алгоритм (правило) знаходження спільної міри двох відрізків, тобто такого третього відрізка, який вкладається в першому і другому ціле число разів. Щоб знайти спільну міру двох відрізків, накладемо менший відрізок на більший так, щоб утворилася остача, менша від меншого відрізка, потім цю першу остачу відрізка (якщо вона є) —на менший відрізок, далі на першу остачу — другу, на другу — третю і т., аж поки якась з остач не вкладеться ціле число разів у попередній остачі. Це число і буде спільною мірою двох відрізків. Якщо ж процес нескінченний, то відрізки — несумісні. Процес, за допомогою якого знаходять спільну міру двох відрізків називають алгоритмом Евкліда.
Величезне значення діяльності Евкліда у тому, що він підсумував і узагальнив всі попередні досягнення грецької математики і створив фундамент для її дальшого розвитку. Історики вважають, що «Начала» — це обробка творів попередніх грецьких математиків X-IV ст до н. е. Історичне значення «Начал Евкліда полягає в тому, що це була перша наукова праця, в якій зроблено спробу дати аксіоматичну побудову геометрії.
Аксіоматичний метод, що є провідним у сучасній математиці, своїм виникненням великою мірою зобов'язаний Евкліду. Жодна наукова праця не мала такого великого успіху, як «Начала» Евкліда. З 1482 р. «Начала» витримали понад 500 видань багатьма мовами світу.


АРХІМЕД (287 – 212 Р. ДО Н.Е.)

Народився Архімед близько 287 року до н. е. в Сіракузах на острові Сіцілія. Здобувши освіту у свого батька — астронома і математика Фідія, Архімед переїхав до Александрії удосконалювати свої знання з математики й астрономії. Тут він зблизився з учнями Евкліда — математиком Ератосфеном, астрономом Кононом і Досіфеєм. Повернувшись до Сіракуз, Архімед підтримував зв’язки з цими вченими. Частина його праць дійшла до нас у вигляді листів до видатних математиків.


Наукова діяльність Архімеда була пов'язана з життєвими потребами батьківщини. Учений проводив дослідження у галузі математики, фізики, механіки, астрономії, За переказами, він так захоплювався наукою, що забував навіть про їжу. Архімед був також видатним інженером-винахідником і брав безпосередню участь у підготовці оборонних споруд. Під час другої Пунічної війни він керував обороною рідного міста. Війна велася між римлянами і карфагенянами (пупами), грецькі Сіракузи висту­пали на боці карфагенян. Коли римське військо почало наступ з моря і суші, Архімед привів у дію сконструйовані ним метальні машини. На сухопутне військо з величезною силою і швидкістю посипалося каміння. Цілі підрозділи ворогів падали на землю, руйнуючи свої бойові порядки. Водночас у море полетіли з кріпосних стін важкі балки, зігнуті у вигляді рогів. Від їх сильних ударів кораблі йшли на дно. Великі гаки, ніби залізними руками піднімали кораблі високо в повітря і кидали їх кормою в море або на скелі біля стін міста. Римське військо було дуже налякане. Побачивши над стіною міста якусь палицю або канат, воїни кричали: «Ось, ось воно!» і з жахом розбігалися.
Грецький геометр і філософ Прокл, який жив у V ст. н. е., писав, що Архімед, крім описаних бойових машин, сконструював ще й таку, яка за допомогою системи дзеркал знищувала ворожі кораблі на морі.
Усе це змусило римлян відмовитися від спроби захопити місто штурмом і перейти до блокади.
Восени 212 p., коли римляни нарешті оволоділи Сіракузами, Архімед трагічно загинув. Давньогрець­кий письменник Плутарх розповідає, що Архімед сидів, розмірковуючи над якоюсь геометричною фігурою, коли перед ним з’явився римський солдат і зажадав, щоб він пішов з ним до Марцелла (воєначальника). Але вчений відповів, що піде до Марцелла лише тоді, коли розв'яже задачу. Солдат обурився, вихопив меч і вбив Архімеда. Є й інші версії смерті видатного математика і механіка.
До нас дійшли дев'ять праць Архімеда, а саме: «Про кулю і циліндр», «Про вимірювання круга», «Про коноїди і сфероїди», «Про спіралі», «Про рівновагу площин», «Про число піщинок», «Про квадратуру параболи», «Про плаваючі тіла» і «Леми».
Частина праць Архімеда загинула. З висловлювань деяких авторів і самого Архімеда можна зробити висновок, що загинули такі твори: «Про основи лічби», «Про много-гранники», «Про терези», «Про важелі». Не збереглися твори Архімеда з оптики й астрономії, а також його міркування про календар.
Мабуть, найпершим твором Архімеда був твір «Начала», в якому він виклав свої міркування про об­числення і лічбу. Збереглися лише окремі уривки з цього твору. Грецька система числення була важкою, недосконалою й незручною, бо стародавні греки позначали числа буквами алфавіту. Щоб відрізнити їх від букв тексту, вони користувались ще різними значками, рисками тощо. Архімед намагався вдосконалити ці обчислення і привести їх до певної системи. Відповідні міркування він виклав у другому своєму творі «Псамміт» («Про число піщинок»). Він робить тут спробу обчислити, скільки піщинок містилося б у «всесвіті», тобто у сфері, центром якої була б Земля і яка охоплювала б усі нерухомі зорі. Розв'язуючи цю задачу, Архімед створив систему числення, яка давала можливість зобразити числа довільної величини. Буквами грецького алфавіту греки могли записати всі числа від 1 до 999; якщо застосувати допоміжні знаки (коми, букву для позначення десятків тисяч і т. д.), то можна було зобразити всі числа від 1 до 108-1. Число 108 дістало назву октади Архімеда. Розроблена Архімедом система числення не була позиційною, бо не мала нуля.
Принципово нові ідеї і методи Архімед виклав у праці «Вимірювання круга». Учені намагалися і до Архімеда встановити величину відношення довжини кола до діаметра.
Архімед у своїх дослідженнях виходить з того, що довжина кола міститься між довжинами периметрів правильних вписаних і описаних многокутників з однаковою кількістю сторін і, якщо число сторін цих многокутників необмежено подвоювати, то їх периметри наближатимуться до своєї границі – довжини кола. Архімед почав робити обчислення з правильних шестикутників і довів його до правильного 96-кутника. Він довів, що коли діаметр кола взяти за одиницю, то величина периметра правильного вписаного 96-кутника буде більшою від 3 10/71 а величина периметра правильного описаного 96-кутника буде меншою за 3 1/7 . Архімед у знайшов, що "Пи"=3,14 з точністю до 0,01. Це значення числа "Пи" , тобто 22/7 називають Архімедовим.
У цій праці Архімед застосував знайдений ще Евдоксом метод, який дістав назву методу вичерпування.
Площу круга Архімед знаходить таким самим методом: він вписує круг і описує навколо нього правильні многокутники, поступово подвоюючи число їх сторін. Площа вписаного многокутника із збільшенням числа його сторін збільшується, наближаючись до площі круга, яка нібито поступово «вичерпу­ється» (звідки й назва «метод вичерпування»). Площа описаного многокутника, навпаки, зменшується. В обох випадках площі многокутників будуть наближатись до площі круга. Доведення за допомогою методу вичерпування базується на тому, що різниця площ многокутників може стати меншою від як завгодно малої наперед заданої величини.
Визначення площі круга Архімед починає з доведення теореми, відомої ще до Евкліда: площа круга дорівнює площі прямокутного трикутника, в якого більший катет дорівнює довжині кола, а менший – ра­діусу круга. Це доведення, яке проводиться методом від супротивного, зводиться до доведення тверджень, що площа круга не може бути ні більшою, ні меншою за площу такого трикутника. Архімед успішно застосовує метод вичерпування і для знаходження площі параболічного сегмента, тобто площі, обмеженої дугою параболи і хордою.
Ці дослідження Архімеда були першим кроком на шляху до аналізу нескінченно малих величин.
У праці «Про циліндр і кулю» Архімед також застосовує метод вичерпування для визначення повер­хонь і об'ємів круглих тіл – циліндра, конуса і кулі.
Про свої відкриття Архімед писав математикові Досіфею: «Я довів, що поверхня всякої кулі в чотири рази більша від площі її великого круга, що об'єм циліндра, основа якого дорівнює площі великого круга кулі, а висота – діаметру кулі, в півтора рази більший від об'єму цієї кулі, а його поверхня (включаючи і площі основ) у півтора рази більша від поверхні кулі; піраміда дорівнює третині призми, якщо вони мають рівні основи і висоти, а конус – третині циліндра (про конус знав і Евдокс). Зрозуміло, що ці властивості тіла мали завжди, але видатні геометри, які жили до Евдокса, не знали цих властивостей і ніхто з них не відкрив їх». Ці відкриття Архімед вважав дуже важливими і висловлював бажання, щоб на його могилі встановили пам'ятник, на якому був би зображений циліндр з вписаною в нього кулею.
У 1906 р. датський філолог і математик Гейберг, вивчаючи старогрецькі рукописи у бібліотеках Стамбула (Туреччина), натрапив на звиток, у якому були три не відомі до того твори Архімеда: дві праці «Про плаваючі тіла» і одна праця, в якій Архімед висловлює думки про механічні методи досліджень, так званий «Ефодік». У творі «Ефодік» вміщено лист Архімеда до відомого математика Ератосфена. В ньому Архімед пише: «Оскільки, звичайно, я в твоїй особі... ціную дуже серйозного вченого і видатного філософа, то я вважаю за доцільне висвітлити в цій книзі своєрідний метод і так пояснити його, щоб ця праця послужила і для тебе стимулом у дослідженнях деяких математичних питань за допомогою механіки». Справді, Архімед спочатку застосовував метод зважування на рівноплечому важелі, а потім проводив геометричне доведення методом вичерпування.
Особливо важливий твір Архімеда «Про плаваючі тіла». У ньому викладено закони гідростатики, які не втратили свого значення й до наших днів. Існує цікава легенда про історію відкриття «закону Архіме­да». Сіракузький цар Гієрон наказав майстрові виготовити корону з чистого золота. Коли корона була готова, цар доручив Архімедові перевірити, чи справді це чисте золото. Архімед довго міркував над тим як це зробити, але нічого не міг придумати, адже корона мала неправильну форму і тому не можна було обчислити її об'єм. Одного разу, купаючись у ванні, Архімед звернув увагу на те, що його тіло у воді стає легшим. Раптом йому спало на думку, як можна розв'язати поставлену проблему. Він так розхвилювався що вискочив з ванни і побіг вулицею, вигукуючи: «Еврика, еврика! («Знайшов, знайшов!»). І справді, зваживши у воді спочатку кусок чистого золота, кусок срібла, потім корону, Архімед установив, що корона була не з чистого золота.
У книжці «Про рівновагу і визначення центра ваги плоских фігур» Архімед уперше доводить відоме правило важеля: нерівні тягарі перебувають у рівновазі на важелі, якщо відстані центрів тягарів від точки опори важеля обернено пропорційні їх вагам. У цій самій праці Архімед визначає центри ваги прямокутників, паралелограмів, трикутників і т. д. Є всі підстави припускати, що тут він установив саме поняття центра ваги тіла: це така точка, в якій досить підтримати тіло, щоб воно було в рівновазі у будь-якому положенні.
Цікаві властивості встановив Архімед, досліджуючи спіральні лінії, такі були відкриті його другом Кононом. Криві цього виду мають назву архімедових спіралей, бо саме Архімед відкрив і довів найголовніші властивості їх.
Архімедова спіраль утворюється рівномірним рухом точки по прямій і одночасним рівномірним обертанням цієї прямої навколо однієї із своїх точок.
Архімедову спіраль використовують у техніці як профіль кулачка в кулачкових механізмах, у самоцентруючих патронах металообробних верстатів тощо.
Слід згадати ще про винайдений Архімедом гідравлічний гвинт. Це відкрита з обох боків циліндрична труба, по осі якої обертається вал з гвинтовою поверхнею. Гідравлічний гвинт застосовують для піднімання рідин, сипких тіл тощо. Реконструйовані і вдосконалені гвинти Архімеда і нині рухають морські кораблі, гвинтові літаки та вертольоти, гідротурбіни тощо.
Є певні відомості, що Архімед розробляв питання оптики (заломлення світла) і астрономії. Виготовлена Архімедом модель небесної сфери створювала правдиву картину руху небесних світил. Ціцерон (давньоримський політичний діяч і оратор І ст. до н. е.) свідчить, що він бачив цю дивну модель на власні очі.
На закінчення слід підкреслити, що творчість Архімеда становить цілу епоху в розвитку математики взагалі. Архімед, створивши метод вичерпування, вніс величезний вклад у ту галузь математики, що зараз займається аналізом нескінченно малих величин. Він створив першооснову для успішного розвитку нової математики в блискучих працях Ньютона, Лейбніца та інших математиків XVII ст. у галузі інтегрального та диференціального числень.



Поділіться з Вашими друзьями:
1   2   3   4   5

Схожі:

Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconОдин з найвидатніших старогрецьких математиків. Ніяких біографічних відомостей про його життя не збереглося. Відомо тільки, що на запрошення царя Птоломея Евклід приїхав у ІІІ ст до н е. в м
...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconБіографія: Андрій Васильович Богуш
Дата І місце народження: 29 вересня 1987 року, село Потелич Жовківського району Львівської області
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconЦісар Андрій Миколайович Науковий ступінь: Вчене звання: Посада: асистент

Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconВалер'ян Петро́вич Підмоги́льний — український письменник І перекладач, один з найвидатніших прозаїків українського «розстріляного відродження»
Валер'ян Петро́вич Підмоги́льний український письменник І перекладач, один з найвидатніших прозаїків українського «розстріляного...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconЗабіла Наталя Львівна (1903—1985) — за драматичну казку «Троянові діти»
Багмут Іван Андріанович (1903—1975) — за повісті «Наш загін „Смерть фашистам!“», «Щасливий день суворовця Криничного», «Голубе плесо»...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconАрхімед (близько 287 до н е., Сіракузи — 212 до н е., Сіракузи) — давньогрецький математик, фізик та інженер, один з найвидатніших вчених античності
Архімед (близько 287 до н е., Сіракузи 212 до н е., Сіракузи) давньогрецький математик, фізик та інженер, один з найвидатніших вчених...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconТема. Квінт Горацій Флакк один із найвидатніших поетів римської літератури. Ода «До Мельпомени» як початок традиції підбиття поетом підсумку свого творчого шляху
Тема. Квінт Горацій Флакк — один із найвидатніших поетів римської літератури. Ода «До Мельпомени» як початок традиції підбиття поетом...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconЦікаві факти про видатних математиків
Життя І діяльність математиків простежується в усі часи від V ст до н е. І до XXІ ст н е. Дослідженням найбільше охоплено XVIII і...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconЦікаві факти про видатних математиків
Життя І діяльність математиків простежується в усі часи від V ст до н е. І до XXІ ст н е. Дослідженням найбільше охоплено XVIII і...
Андрій миколайович колмогоров(1903-1987) один з найвидатніших радянських математиків iconВидавництво ЦК лксму
В окупованому фашистами україн­ському приморському місті активно діє більшовицьке підпілля. Один за одним відбуваються акти диверсії....


База даних захищена авторським правом ©biog.in.ua 2017
звернутися до адміністрації

    Головна сторінка